
Exercises
Derivatives – Solutions
Exercise 1.

(a) Let f and g be di�erentiable. Then with the product rule (P) and the chain
rule (C) we get(

f(x)

g(x)

) ′
=

(
f(x) · 1

g(x)

) ′
=

(
f(x) · (g(x))−1

) ′
(P)
= f ′(x) · (g(x))−1 + f(x) ·

(
(g(x))−1

) ′
(C)
=

f ′(x)

g(x)
+ f(x) ·

(
(−1) · (g(x))−2 · g ′(x)

)
=

f ′(x)

g(x)
−

f(x)g ′(x)

(g(x))2

=
f ′(x)g(x) − f(x)g ′(x)

(g(x))2
.

Note: (g(x))−1 means the negative power of the value g(x) (i.e. 1
g(x)

) and
should not be confused with the inverse g−1 of g!

(b) (i) Using the chain rule (C) we get

(ax) ′ =
(
eln(a)·x) ′ (C)= eln(a)·x · ln(a) = ax · ln(a).

(ii) Using the chain rule (C) and the product rule (P) we get

(xx) ′ =
(
eln(x)·x) ′ (C)= eln(x)·x · (ln(x) · x) ′

(P)
= eln(x)·x ·

(
1

x
· x+ ln(x)

)
= xx · (1+ ln(x)).
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Exercise 2.

(a) With the chain rule we get

f ′(x) = e
√
x · 1

2
x−

1
2 =

e
√
x

2
√
x

(b)
f(x) =

1

x
− x3 + 2 ln x+ e

⇒ f ′(x) = −
1

x2
− 3x2 +

2

x

(c)
f(x) = sin2 x · cos2 x

Product rule: (u · v) ′ = u ′v+ uv ′ :

⇒ f ′(x) = 2 sin x · cos x · cos2 x+ sin2 x · 2 cos x · (− sin x)

= 2 sin x cos x (cos2 x− sin2 x)

(d)

f(x) = 2x +
ln x

2
−

1

x

⇒ f ′(x) = ln 2 · 2x + 1

2x
+

1

x2

(e)

f(x) =
x2

sin x+ x

Quotient rule:

f ′(x) =
2x (sin x+ x) − x2(cos x+ 1)

(sin x+ x)2
=

2x sin x+ x2 − x2 cos x
(sin x+ x)2

(f)
f(x) = e(x+2)2−x

Chain rule: y = ez, z = (x+ 2)2 − x

⇒ y ′(z) = ez, z ′(x) = 2(x+ 2) − 1 = 2x+ 3

⇒ f ′(x) = y ′(z) · z ′(x) = ez · (2x+ 3) = (2x+ 3) e(x+2)2−x

2



Exercise 3.

(a) We compute the �rst and second derivative:

f ′(x) = 6x2 + 6x− 36

f ′′(x) = 12x+ 6

We check the necessary condition for extrema and obtain

f ′(x) = 0⇔ 6x2 + 6− 36 = 0⇔ x2 + 1− 6 = 0⇔ (x− 2)(x+ 3) = 0⇔ x = 2 or x = −3

So x1 = 2 and x2 = −3 are the possible extreme points. With f ′′(x1) =
12 · 2 + 6 = 30 > 0 and f ′′(x2) = 12 · (−3) + 6 = −30 < 0 we know that
there is a local minimum at x1 = 2 and a local maximum at x2 = −3.
None of these points is a global extremum since limx→−∞ f(x) = −∞ and
limx→∞ f(x) = ∞.

(b) We compute the �rst and second derivative:

g ′(x) = (2x+ 3) e(x+2)2−x

g ′′(x) =
(
(2x+ 3) e(x+2)2−x

) ′
= 2e(x+2)2−x + (2x+ 3) ·

(
(2x+ 3) e(x+2)2−x

)
=

(
(2x+ 3)2 + 2

)
e(x+2)2−x

We check the necessary condition for extrema and obtain

g ′(x) = 0⇔ (2x+ 3) e(x+2)2−x︸ ︷︷ ︸
>0

= 0

⇔ 2x+ 3 = 0

⇔ x =
3

2

With g ′′(x) =
(
(2x+ 3)2 + 2

)︸ ︷︷ ︸
>0

e(x+2)2−x︸ ︷︷ ︸
>0

> 0, we know that there is a local

minimum at x = 3
2
.

It is easy to see that g ′(x) < 0 for x < 3
2

and g ′(x) > 0 for x > 3
2

which
means that g(x) is strictly decreasing up to x = 3

2
and strictly increasing

from x = 3
2
. Thus the minimum at x = 3

2
must be a global minimum.
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Exercise 4.

(a)

lim
x→0

sin x

x

L ′H
= lim

x→0

cos x
1

= 1

(b)

lim
x→0

ln(x) · x = lim
x→0

ln(x)
1
x

L ′H
= lim

x→0

1
x

− 1
x2

= lim
x→0

−x = 0

By transforming the function into ln(x)
1
x

the numerator as well the denomina-
tor diverge to ±∞.

(c)

lim
x→0

ex − x− 1− 1
2
x2

sin x− x

L ′H
= lim

x→0

ex − 1− x

cos x− 1

L ′H
= lim

x→0

ex − 1

− sin x

L ′H
= lim

x→0

ex

−cosx
=

1

−1
= −1

Exercise 5.

(a) By the de�nition of the inverse function, we know that

f(f−1(x)) = x.

Thus, the functions on both sides are the same and must have the same
derivative. This implies (

f(f−1(x))
) ′

= (x) ′⇔ f ′(f−1(x)) · (f−1(x)) ′ = 1

⇔ (f−1(x)) ′ =
1

f ′(f−1(x))

for all x with f ′(f−1(x)) 6= 0. This �nishes the proof.

(b) We know that ln x is the inverse of ex, i.e. for f(x) := ex we have f−1(x) =
ln(x) and f ′(x) = ex. Thus the rule of the derivative of the inverse gives us

(ln(x)) ′ =
(
f−1(x)

) ′
=

1

f ′(f−1(x))
=

1

eln(x) =
1

x
.
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(c) (i)

(tan(x)) ′ =
(

sin(x)
cos(x)

) ′
=

cos(x) · cos(x) − sin(x)(− sin(x))
cos2(x)

= 1+
sin2(x)

cos2(x)
= 1+ (tan(x))2.

(ii) For f(x) = tan(x) we have f−1(x) = arctan(x) and f ′(x) = 1+ tan2(x).
Thus we get

(arctan(x)) ′ =
(
f−1(x)

) ′
=

1

f ′(f−1(x))
=

1

1+ (tan(arctan(x)))2
=

1

1+ x2
.
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