Exercises

Derivatives - Solutions

Exercise 1.

(a) Let f and g be differentiable. Then with the product rule (P) and the chain rule (C) we get

$$
\begin{aligned}
\left(\frac{f(x)}{g(x)}\right)^{\prime} & =\left(f(x) \cdot \frac{1}{g(x)}\right)^{\prime} \\
& =\left(f(x) \cdot(g(x))^{-1}\right)^{\prime} \\
& \stackrel{(P)}{=} f^{\prime}(x) \cdot(g(x))^{-1}+f(x) \cdot\left((g(x))^{-1}\right)^{\prime} \\
& \stackrel{(C)}{=} \frac{f^{\prime}(x)}{g(x)}+f(x) \cdot\left((-1) \cdot(g(x))^{-2} \cdot g^{\prime}(x)\right) \\
& =\frac{f^{\prime}(x)}{g(x)}-\frac{f(x) g^{\prime}(x)}{(g(x))^{2}} \\
& =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} .
\end{aligned}
$$

Note: $(g(x))^{-1}$ means the negative power of the value $g(x)$ (i.e. $\left.\frac{1}{g(x)}\right)$ and should not be confused with the inverse g^{-1} of g !
(b) (i) Using the chain rule (C) we get

$$
\left(\mathrm{a}^{\mathrm{x}}\right)^{\prime}=\left(\mathrm{e}^{\ln (\mathrm{a}) \cdot \mathrm{x}}\right)^{\prime} \stackrel{(\mathrm{C})}{=} e^{\ln (\mathrm{a}) \cdot \mathrm{x}} \cdot \ln (\mathrm{a})=\mathrm{a}^{\mathrm{x}} \cdot \ln (\mathrm{a})
$$

(ii) Using the chain rule (C) and the product rule (P) we get

$$
\begin{aligned}
\left(x^{x}\right)^{\prime}=\left(e^{\ln (x) \cdot x}\right)^{\prime} & \stackrel{(C)}{=} e^{\ln (x) \cdot x} \cdot(\ln (x) \cdot x)^{\prime} \\
& \stackrel{(P)}{=} e^{\ln (x) \cdot x} \cdot\left(\frac{1}{x} \cdot x+\ln (x)\right)=x^{x} \cdot(1+\ln (x)) .
\end{aligned}
$$

Exercise 2.

(a) With the chain rule we get

$$
f^{\prime}(x)=e^{\sqrt{x}} \cdot \frac{1}{2} x^{-\frac{1}{2}}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}
$$

(b)

$$
\begin{array}{r}
f(x)=\frac{1}{x}-x^{3}+2 \ln x+e \\
\Rightarrow f^{\prime}(x)=-\frac{1}{x^{2}}-3 x^{2}+\frac{2}{x}
\end{array}
$$

(c)

$$
f(x)=\sin ^{2} x \cdot \cos ^{2} x
$$

Product rule: $(u \cdot v)^{\prime}=u^{\prime} v+u v^{\prime}$:

$$
\begin{gathered}
\Rightarrow f^{\prime}(x)=2 \sin x \cdot \cos x \cdot \cos ^{2} x+\sin ^{2} x \cdot 2 \cos x \cdot(-\sin x) \\
=2 \sin x \cos x\left(\cos ^{2} x-\sin ^{2} x\right)
\end{gathered}
$$

(d)

$$
\begin{gathered}
f(x)=2^{x}+\frac{\ln x}{2}-\frac{1}{x} \\
\Rightarrow f^{\prime}(x)=\ln 2 \cdot 2^{x}+\frac{1}{2 x}+\frac{1}{x^{2}}
\end{gathered}
$$

(e)

$$
f(x)=\frac{x^{2}}{\sin x+x}
$$

Quotient rule:

$$
f^{\prime}(x)=\frac{2 x(\sin x+x)-x^{2}(\cos x+1)}{(\sin x+x)^{2}}=\frac{2 x \sin x+x^{2}-x^{2} \cos x}{(\sin x+x)^{2}}
$$

(f)

$$
f(x)=e^{(x+2)^{2}-x}
$$

Chain rule: $\quad y=e^{z}, z=(x+2)^{2}-x$

$$
\begin{array}{r}
\Rightarrow y^{\prime}(z)=e^{z}, z^{\prime}(x)=2(x+2)-1=2 x+3 \\
\Rightarrow f^{\prime}(x)=y^{\prime}(z) \cdot z^{\prime}(x)=e^{z} \cdot(2 x+3)=(2 x+3) e^{(x+2)^{2}-x}
\end{array}
$$

Exercise 3.

(a) We compute the first and second derivative:

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}+6 x-36 \\
f^{\prime \prime}(x) & =12 x+6
\end{aligned}
$$

We check the necessary condition for extrema and obtain

$$
\begin{aligned}
& f^{\prime}(x) & =0 \\
\Leftrightarrow & 6 x^{2}+6-36 & =0 \\
\Leftrightarrow & x^{2}+1-6 & =0 \\
\Leftrightarrow & (x-2)(x+3) & =0 \\
\Leftrightarrow & x-2 \text { or } x & =-3
\end{aligned}
$$

So $x_{1}=2$ and $x_{2}=-3$ are the possible extreme points. With $f^{\prime \prime}\left(x_{1}\right)=$ $12 \cdot 2+6=30>0$ and $f^{\prime \prime}\left(x_{2}\right)=12 \cdot(-3)+6=-30<0$ we know that there is a local minimum at $x_{1}=2$ and a local maximum at $x_{2}=-3$.
None of these points is a global extremum since $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$.
(b) We compute the first and second derivative:

$$
\begin{aligned}
g^{\prime}(x) & =(2 x+3) e^{(x+2)^{2}-x} \\
g^{\prime \prime}(x) & =\left((2 x+3) e^{(x+2)^{2}-x}\right)^{\prime} \\
& =2 e^{(x+2)^{2}-x}+(2 x+3) \cdot\left((2 x+3) e^{(x+2)^{2}-x}\right) \\
& =\left((2 x+3)^{2}+2\right) e^{(x+2)^{2}-x}
\end{aligned}
$$

We check the necessary condition for extrema and obtain

$$
\begin{array}{rlrl}
g^{\prime}(x) & =0 \\
\Leftrightarrow & (2 x+3) \underbrace{e^{(x+2)^{2}-x}}_{>0} & =0 \\
\Leftrightarrow & & 2 x+3 & =0 \\
\Leftrightarrow & & x & =\frac{3}{2}
\end{array}
$$

With $g^{\prime \prime}(x)=\underbrace{\left((2 x+3)^{2}+2\right)}_{>0} \underbrace{e^{(x+2)^{2}-x}}_{>0}>0$, we know that there is a local minimum at $x=\frac{3}{2}$.
It is easy to see that $g^{\prime}(x)<0$ for $x<\frac{3}{2}$ and $g^{\prime}(x)>0$ for $x>\frac{3}{2}$ which means that $g(x)$ is strictly decreasing up to $x=\frac{3}{2}$ and strictly increasing from $x=\frac{3}{2}$. Thus the minimum at $x=\frac{3}{2}$ must be a global minimum.

Exercise 4.

(a)

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

(b)

$$
\lim _{x \rightarrow 0} \ln (x) \cdot x=\lim _{x \rightarrow 0} \frac{\ln (x)}{\frac{1}{x}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0}-x=0
$$

By transforming the function into $\frac{\ln (x)}{\frac{1}{x}}$ the numerator as well the denominator diverge to $\pm \infty$.
(c)

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1-\frac{1}{2} x^{2}}{\sin x-x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{e^{x}-1-x}{\cos x-1} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{e^{x}-1}{-\sin x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{e^{x}}{-\cos x}=\frac{1}{-1}=-1
$$

Exercise 5.

(a) By the definition of the inverse function, we know that

$$
f\left(f^{-1}(x)\right)=x .
$$

Thus, the functions on both sides are the same and must have the same derivative. This implies

$$
\begin{array}{rlrl}
& & \left(f\left(\mathrm{f}^{-1}(\mathrm{x})\right)\right)^{\prime} & =(\mathrm{x})^{\prime} \\
\Leftrightarrow & \mathrm{f}^{\prime}\left(\mathrm{f}^{-1}(\mathrm{x})\right) \cdot\left(\mathrm{f}^{-1}(\mathrm{x})\right)^{\prime} & =1 \\
\Leftrightarrow & & \left(\mathrm{f}^{-1}(\mathrm{x})\right)^{\prime} & =\frac{1}{\mathrm{f}^{\prime}\left(\mathrm{f}^{-1}(\mathrm{x})\right)}
\end{array}
$$

for all x with $f^{\prime}\left(f^{-1}(x)\right) \neq 0$. This finishes the proof.
(b) We know that $\ln x$ is the inverse of e^{x}, i.e. for $f(x):=e^{x}$ we have $f^{-1}(x)=$ $\ln (x)$ and $f^{\prime}(x)=e^{x}$. Thus the rule of the derivative of the inverse gives us

$$
(\ln (x))^{\prime}=\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{e^{\ln (x)}}=\frac{1}{x}
$$

(c) (i)

$$
\begin{aligned}
(\tan (x))^{\prime}=\left(\frac{\sin (x)}{\cos (x)}\right)^{\prime} & =\frac{\cos (x) \cdot \cos (x)-\sin (x)(-\sin (x))}{\cos ^{2}(x)} \\
& =1+\frac{\sin ^{2}(x)}{\cos ^{2}(x)}=1+(\tan (x))^{2} .
\end{aligned}
$$

(ii) For $f(x)=\tan (x)$ we have $f^{-1}(x)=\arctan (x)$ and $f^{\prime}(x)=1+\tan ^{2}(x)$. Thus we get

$$
(\arctan (x))^{\prime}=\left(f^{-1}(x)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{1+(\tan (\arctan (x)))^{2}}=\frac{1}{1+x^{2}}
$$

